# My Items

I'm a title. Click here to edit me.

## A New Spin on Color Quantization

We address the problem of image color quantization using a Maximum Entropy based approach. We argue that adding thermal noise to the system yields better visual impressions than that obtained from a simple energy minimization. To quantify this observation, we introduce the coarse-grained quantization error, and seek the optimal temperature which minimizes this new observable. By comparing images with different structural properties, we show that the optimal temperature is a good proxy for complexity at different scales. Finally, having shown that the convoluted error is a key observable, we directly minimize it using a Monte Carlo algorithm to generate a new series of quantized images. Adopting an original approach based on the informativity of finite size samples, we are able to determine the optimal convolution parameter leading to the best visuals.

## Scale Dependencies and Self-Similarity Through Wavelet Scattering Covariance

We introduce a scattering covariance matrix which provides non-Gaussian models of time-series having stationary increments. A complex wavelet transform computes signal variations at each scale. Dependencies across scales are captured by the joint covariance across time and scales of complex wavelet coefficients and their modulus. This covariance is nearly diagonalized by a second wavelet transform, which defines the scattering covariance. We show that this set of moments characterizes a wide range of non-Gaussian properties of multi-scale processes. This is analyzed for a variety of processes, including fractional Brownian motions, Poisson, multifractal random walks and Hawkes processes. We prove that self-similar processes have a scattering covariance matrix which is scale invariant. This property can be estimated numerically and defines a class of wide-sense self-similar processes. We build maximum entropy models conditioned by scattering covariance coefficients, and generate new time-series with a microcanonical sampling algorithm. Applications are shown for highly non-Gaussian financial and turbulence time-series.

## Will Random Cone-wise Linear Systems Be Stable?

We consider a simple model for multidimensional cone-wise linear dynamics around cusp-like equilibria. We assume that the local linear evolution is either v′=Av or Bv (with A, B independently drawn a rotationally invariant ensemble of N×N matrices) depending on the sign of the first component of v. We establish strong connections with the random diffusion persistence problem. When N→∞, we find that the Lyapounov exponent is non self-averaging, i.e. one can observe apparent stability and apparent instability for the same system, depending on time and initial conditions. Finite N effects are also discussed, and lead to cone trapping phenomena.

## On Hawkes Processes with Infinite Mean Intensity

The stability condition for Hawkes processes and their non-linear extensions usually relies on the condition that the mean intensity is a finite constant. It follows that the total endogeneity ratio needs to be strictly smaller than unity. In the present note we argue that it is possible to have a total endogeneity ratio greater than unity without rendering the process unstable. In particular, we show that, provided the endogeneity ratio of the linear Hawkes component is smaller than unity, Quadratic Hawkes processes are always stationary, although with infinite mean intensity when the total endogenity ratio exceeds one. This results from a subtle compensation between the inhibiting realisations (mean-reversion) and their exciting counterparts (trends).

## Do fundamentals shape the price response? A critical assessment of linear impact models

We compare the predictions of the stationary Kyle model, a microfounded multi-step linear price impact model in which market prices forecast fundamentals through information encoded in the order flow, with those of the propagator model, a purely data-driven model in which trades mechanically impact prices with a time-decaying kernel. We find that, remarkably, both models predict the exact same price dynamics at high frequency, due to the emergence of universality at small time scales. On the other hand, we find those models to disagree on the overall strength of the impact function by a quantity that we are able to relate to the amount of excess-volatility in the market. We reveal a crossover between a high-frequency regime in which the market reacts sub-linearly to the signed order flow, to a low-frequency regime in which prices respond linearly to order flow imbalances. Overall, we reconcile results from the literature on market microstructure (sub-linearity in the price response to traded volumes) with those relating to macroeconomically relevant timescales (in which a linear relation is typically assumed).

## Universal amplitudes ratios for critical aging via functional renormalization group

We discuss how to calculate non-equilibrium universal amplitude ratios in the functional renormalization group approach, extending its applicability. In particular, we focus on the critical relaxation of the Ising model with non-conserved dynamics (model A) and calculate the universal amplitude ratio associated with the fluctuation-dissipation ratio of the order parameter, considering a critical quench from a high-temperature initial condition. Our predictions turn out to be in good agreement with previous perturbative renormalization-group calculations and Monte Carlo simulations.

## Exploration of the Parameter Space in Macroeconomic Agent-Based Models

Agent-Based Models (ABM) are computational scenario-generators, which can be used to predict the possible future outcomes of the complex system they represent. To better understand the robustness of these predictions, it is necessary to understand the full scope of the possible phenomena the model can generate. Most often, due to high-dimensional parameter spaces, this is a computationally expensive task. Inspired by ideas coming from systems biology, we show that for multiple macroeconomic models, including an agent-based model and several Dynamic Stochastic General Equilibrium (DSGE) models, there are only a few stiff parameter combinations that have strong effects, while the other sloppy directions are irrelevant.

This suggest an algorithm that efficiently explores the space of parameters by primarily moving along the stiff directions. We apply our algorithm to a medium-sized agent-based model, and show that it recovers all possible dynamics of the unemployment rate. The application of this method to Agent-based Models may lead to a more thorough and robust understanding of their features, and provide enhanced parameter sensitivity analyses. Several promising paths for future research are discussed.

## Capital Demand Driven Business Cycles: Mechanism and Effects

We develop a tractable macroeconomic model that captures dynamic behaviors across multiple timescales, including business cycles. The model is anchored in a dynamic capital demand framework reflecting an interactions-based process whereby firms determine capital needs and make investment decisions on a micro level. We derive equations for aggregate demand from this micro setting and embed them in the Solow growth economy. As a result, we obtain a closed-form dynamical system with which we study economic fluctuations and their impact on long-term growth. For realistic parameters, the model has two attracting equilibria: one at which the economy contracts and one at which it expands. This bi-stable configuration gives rise to quasiperiodic fluctuations, characterized by the economy’s prolonged entrapment in either a contraction or expansion mode punctuated by rapid alternations between them. We identify the underlying endogenous mechanism as a coherence resonance phenomenon. In addition, the model admits a stochastic limit cycle likewise capable of generating quasiperiodic fluctuations; however, we show that these fluctuations cannot be realized as they induce unrealistic growth dynamics. We further find that while the fluctuations powered by coherence resonance can cause substantial excursions from the equilibrium growth path, such deviations vanish in the long run as supply and demand converge.

## Economic Crises in a Model with Capital Scarcity and Self-Reflexive Confidence

In the General Theory, Keynes remarked that the economy's state depends on expectations, and that these expectations can be subject to sudden swings. In this work, we develop a multiple equilibria behavioural business cycle model that can account for demand or supply collapses due to abrupt drops in consumer confidence, which affect both consumption propensity and investment. We show that, depending on the model parameters, four qualitatively different outcomes can emerge, characterised by the frequency of capital scarcity and/or demand crises. In the absence of policy measures, the duration of such crises can increase by orders of magnitude when parameters are varied, as a result of the ``paradox of thrift''. Our model suggests policy recommendations that prevent the economy from getting trapped in extended stretches of low output, low investment and high unemployment.

## Exogenous and Endogenous Price Jumps Belong to Different Dynamical Classes

Synchronizing a database of stock specific news with 5 years worth of order book data on 300 stocks, we show that abnormal price movements following news releases (exogenous) exhibit markedly different dynamical features from those arising spontaneously (endogenous). On aver- age, large volatility fluctuations induced by exogenous events occur abruptly and are followed by a decaying power-law relaxation, while endogenous price jumps are characterized by progressively accelerating growth of volatility, also followed by a power-law relaxation, but slower than for exogenous jumps. Remarkably, our results are reminiscent of what is observed in different contexts, namely Amazon book sales and YouTube views. Finally, we show that fitting power-laws to individual volatility profiles allows one to classify large events into endogenous and exogenous dynamical classes, without relying on the news feed.

## A new spin on optimal portfolios and ecological equilibria

We consider the classical problem of optimal portfolio construction with the constraint that no short position is allowed, or equivalently the valid equilibria of multispecies Lotka-Volterra equations, in the special case where the interaction matrix is of unit rank, corresponding to a single-resource MacArthur model. We compute the average number of solutions and show that its logarithm grows as Nα, where N is the number of assets or species and α≤2/3 depends on the interaction matrix distribution. We conjecture that the most likely number of solutions is much smaller and related to the typical sparsity m(N) of the solutions, which we compute explicitly. We also find that the solution landscape is similar to that of spin-glasses, i.e. very different configurations are quasi-degenerate. Correspondingly, "disorder chaos" is also present in our problem. We discuss the consequence of such a property for portfolio construction and ecologies, and question the meaning of rational decisions when there is a very large number "satisficing" solutions.

## Cross impact in derivative markets

We introduce a linear cross-impact framework in a setting in which the price of some given financial instruments (derivatives) is a deterministic function of one or more, possibly tradeable, stochastic factors (underlying). We show that a particular cross-impact model, the multivariate Kyle model, prevents arbitrage and aggregates (potentially non-stationary) traded order flows on derivatives into (roughly stationary) liquidity pools aggregating order flows traded on both derivatives and underlying. Using E-Mini futures and options along with VIX futures, we provide empirical evidence that the price formation process from order flows on derivatives is driven by cross-impact and confirm that the simple Kyle cross-impact model is successful at capturing parsimoniously such empirical phenomenology. Our framework may be used in practice for estimating execution costs, in particular hedging costs.